
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022 2547

Calibrated Bandit Learning for Decentralized Task
Offloading in Ultra-Dense Networks

Rui Zhang , Peng Cheng , Member, IEEE, Zhuo Chen , Senior Member, IEEE, Sige Liu ,

Branka Vucetic , Life Fellow, IEEE, and Yonghui Li , Fellow, IEEE

Abstract— The integration of mobile edge computing (MEC)
into an ultra-dense network (UDN) can provide ubiquitous task
offloading services to computation-demanding users leveraging
densely deployed micro base stations. The conventional multi-
user task offloading strategies are performed centrally, where a
central node makes global task offloading decisions on server
selection and resource allocation. In practice, the deployment
becomes prohibitively complex with the increasing number of
users as it involves high communication overhead and complex
global optimization operations. In this paper, we develop a novel
decentralized task offloading strategy in UDN, enabling users to
independently make local task offloading decisions. We formulate
the associated optimization problem to minimize the long-term
average task delay among all users. On this basis, we develop a
novel calibrated contextual bandit learning (CCBL) algorithm,
where users can learn the computational delay functions of
micro base stations and predict the task offloading decisions
of other users in a decentralized manner. The convergence of
the proposed CCBL algorithm is verified via the approachability
theory. Moreover, we transfer the target of calibrated learning
from all micro base stations to a single user and propose a user-
oriented CCBL algorithm to further decrease the computational
complexity and increase the convergence rate. Simulation results
illustrate that our proposed algorithm outperforms the existing
decentralized algorithms and approaches the centralized one.

Index Terms— Decentralized task offloading, ultra-dense
networks, contextual bandit learning, calibrated learning.

I. INTRODUCTION

THE rapid development of 5G and beyond has motivated
a great number of new mobile computing applications,

such as wearable virtual reality [1], health monitoring [2],

Manuscript received September 5, 2021; revised December 21, 2021;
accepted February 7, 2022. Date of publication February 16, 2022; date of
current version April 18, 2022. The work of Peng Cheng was supported by
ARC under Grant DE190100162 and DP210103410. The work of Yonghui Li
was supported by ARC under Grant DP190101988 and DP210103410. The
associate editor coordinating the review of this article and approving it
for publication was C. R. Murthy. (Corresponding authors: Peng Cheng;
Yonghui Li.)

Rui Zhang is with the Department of Information Engineering, The Chi-
nese University of Hong Kong, Hong Kong, China (e-mail: ruizhang@
cuhk.edu.hk).

Peng Cheng is with the Department of Computer Science and Information
Technology, La Trobe University, Melbourne, VIC 3086, Australia, and
also with The University of Sydney, Sydney, NSW 2006, Australia (e-mail:
p.cheng@latrobe.edu.au; peng.cheng@sydney.edu.au).

Zhuo Chen was with CSIRO DATA61, Sydney, NSW 1710, Australia
(e-mail: zhuo.chen@ieee.org).

Sige Liu, Branka Vucetic, and Yonghui Li are with the School of Electrical
and Information Engineering, The University of Sydney, Sydney, NSW 2006,
Australia (e-mail: sige.liu@sydney.edu.au; branka.vucetic@sydney.edu.au;
yonghui.li@sydney.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2022.3152262.

Digital Object Identifier 10.1109/TCOMM.2022.3152262

and autonomous driving [3], which generate a large volume
of computationally intensive delay-sensitive tasks at mobile
users. Due to the inherent limitation of computational capacity
and battery life, mobile users alone are unlikely to complete
these tasks in a timely manner. As a concept of paradigm-
shift, mobile edge computing (MEC) [4]–[6] was proposed
to push mobile computing and data analysis to the network
edge close to the mobile users. In this case, mobile users
are allowed to offload their computation tasks to the MEC
servers, enjoying the benefits of fast task execution with low
computation and transmission latencies. Furthermore, it has
been widely accepted that offloading the time-sensitive tasks
generated by applications such as AR/VR [7], [8] to MEC
servers for lower computational delay is a key technology of
5G and beyond [9].

Many multi-user centralized task offloading schemes have
been proposed in [10]–[12], where the task features (e.g., the
data and computation amounts for the task execution) are
uploaded to a central node, such as a macro base station
(MaBS), for global decision making on the MEC server
selection and computational resource allocation at each MEC
server. In such global decision making, the task offloading
decision was usually framed as a convex/non-convex opti-
mization problem. In [10], the optimal computational resource
allocation was formulated as a convex optimization problem,
aiming to minimize the weighted sum of transmission energy
consumption of mobile users under the constraint on computa-
tion latency. The authors in [11] proposed a deep-Q network-
based task offloading and a resource allocation algorithm to
minimize the overall offloading cost in terms of energy con-
sumption, computation requirements, and delay. To maximize
a weighted sum of reductions in the task delay and energy
consumption, the authors in [12] formulated the problem
as a mixed integer nonlinear program. This program jointly
optimizes the task offloading decision, uplink transmission
power of mobile users, and computing resource allocation at
the MEC server. With the network evolution, the MEC services
will be offered in an ultra-densely network (UDN) [13]–[16]
with ultra-dense deployed microcell base stations (MiBSs),
enabling ubiquitous computation offloading capabilities for
mobile users. However, due to the interaction between multiple
users and MEC servers, the centralized offloading strategy
is highly inefficient, which is further exacerbated by the
high communication overhead due to the task features of a
large number of mobile users. Finally, the global optimization
operation at the central node is inevitably complex, resulting
in a delayed decision delivery.

0090-6778 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1091-7894
https://orcid.org/0000-0002-9011-7928
https://orcid.org/0000-0002-5066-6623
https://orcid.org/0000-0002-2700-2001
https://orcid.org/0000-0001-7702-1123
https://orcid.org/0000-0003-1870-3727

2548 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

As a stark contrast with the centralized policy, in a
distributed policy, no user can exchange observations but
make decisions independently based on their individual local
observations [17], [18]. In other words, there is no information
sharing among users, thus no communication overhead is
introduced. However, the lack of information sharing is very
likely to result in conflict among users. To enhance the collab-
oration among users with minimal communication overhead,
decentralized policies are introduced in [19]–[21]. A decentral-
ized policy relies on users to make scheduling decisions locally
without information sharing among users. However, different
from a distributed policy, historic information sharing exists
after decision makings. This information does not affect the
task offloading decisions in the current round but enables users
to learn peer behaviors more effectively. Therefore, users can
predict the scheduling decisions of others in the future and
avoid conflicts.

In this paper, we develop a novel decentralized task offload-
ing strategy in a UDN, where local task offloading decisions
are made by users independently without information shar-
ing among them. Different from the existing decentralized
strategies [19]–[21], we first consider the competition of com-
putational resources among users. This requires an advanced
strategy to reduce the conflict. We further consider various
task features, such as the size of temporary variables gener-
ated during the processing, which are highly related to the
computational delay of tasks. Mathematically, we formulate
the task offloading as an optimization problem, aiming to
minimize the long-term average task delay of all users with
a restricted number of MiBSs. To achieve the decentralized
offloading, we decouple the optimization problem into mul-
tiple identically independent bandit learning problems, where
each user minimizes its own long-term average task delay and
learn the computational delay function related to task features.
Meanwhile, we develop a calibrated forecaster for each user
to predict the task offloading outcomes of others to reduce
conflict.

Specifically, we develop a novel contextual calibrated learn-
ing (CCBL) algorithm by fusing the bandit learning and
calibrated learning. For the first few tasks (initialization), users
will offload at least one to the MiBS, whose computational
delay function is totally unknown a priori. In the following,
we will introduce three core steps and an auxiliary one in
each task offloading round after the initialization. When a
task is generated at a user, in the first step, the user selects
an MiBS locally and offloads the task to this MiBS. This
task offloading decision strikes a balance between exploration
(offloading the task to a MiBS whose computational delay
function is not well-learned) and exploitation (leveraging the
prediction of other users’ task offloading decisions to minimize
the delay of this task). In the second step, the MaBS monitors
the task offloading decisions of all users in this round and
broadcasts such information. In this way, all users within
the coverage area can receive the task offloading decisions
of the others. Based on this knowledge, in the third step,
the calibrated forecaster at each user estimates other users’
decisions in the next round. The prediction will assist each
user in offloading its task for the next round. The auxiliary

step follows the return of the task result, and in this step, each
user updates its estimate of the computational delay function
involving the selected MiBS and the task feature in this
round. Following the four steps, CCBL reduces conflict with
others and enables a user to minimize the long-term average
task delay.

Under the CCBL algorithm, we also discuss the convergence
of the proposed calibrated forecasters and prove that the con-
vergence rate decreases with the increasing number of users
and MiBSs. To further decrease the computational complexity
and convergence rate of CCBL, we transfer the learning target
of a calibrated forecaster from all MiBSs to only a single
user and propose a user-oriented CCBL (UOCCBL) algorithm.
Simulation results show that the proposed CCBL algorithm
outperforms the existing decentralized task offloading strate-
gies and that it is only slightly inferior to the centralized one.

A. Contribution

The fusion of communication and computing is a key
enabler in 5G and beyond networks [22], and how to reduce
the communication/computing latency for computational-
intensive applications is the major bottleneck and a contem-
porarily significant topic [23]. This paper incorporates the
mobile edge computing into 5G, and the main contributions
of this paper can be summarized as follows.

• We develop a novel decentralized task offloading scheme
in UDN, enabling users to minimize the long-term aver-
age task delay without the need for computational capa-
bilities of MiBSs or the offloading decisions of other
users.

• We propose a novel CCBL algorithm by fusing ban-
dit learning and calibrated learning, enabling users to
simultaneously learn the computational delay functions of
MiBSs and predict the task offloading decisions of others.
We also analyze the convergence rate of the proposed
CCBL algorithm.

• We propose a UOCCBL algorithm to decrease the com-
putational complexity by transferring the learning target
of the calibrated forecaster from all MiBSs to a single
user.

The rest of the paper is organized as follows. In Section II,
we present the UDN task offloading model and formu-
late the decentralized contextual task offloading problem.
In Section III, we decouple the problem to independent con-
textual MAB problems and elaborate on the proposed CCBL
algorithm for decentralized task offloading. An extended task
offloading algorithm UOCCBL is proposed in Section IV
to decrease the computational complexity. Simulation results
are presented in Section V followed by conclusions in
Section VI. For convenience, we list the most important sym-
bols in Table I.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a UDN composed of one MaBS, NB

MiBSs, and NU randomly located users shown in Fig. 1.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CALIBRATED BANDIT LEARNING FOR DECENTRALIZED TASK OFFLOADING IN ULTRA-DENSE NETWORKS 2549

TABLE I

LIST OF SYMBOLS

Fig. 1. An example of UDN, where NB = 5 and NU = 8.

Let b ∈ B = {1, . . . , NB} denote the MiBS index, u ∈
U = {1, . . . , NU} the user index, and r ∈ R = {1, . . . , NR}
the task round index. Tasks are generated by all users at the
beginning of each task round r, and the time duration of each
round is t0. In this paper, we adopt a binary task computation
offloading mode, where each task is executed as a whole either
locally or remotely at a nearby MiBS.

As shown in Fig. 1, the coverage areas of the MiBSs are
limited by their transmission powers, and may overlap with
each other due to the ultra-dense deployment of MiBSs. Thus,
a user may be covered by multiple MiBSs simultaneously
and may offload its tasks to any of them for fast execution.
In addition, all the users are covered by the MaBS with wide
coverage. Note that the MaBS does not provide computational
resources, but monitors network activities and broadcasts the
task offloading decisions of all users. The data size of task
offloading decisions is only several bits, thus the introduced
network overhead can be ignored. Specifically, they can be
transmitted by the Physical Broadcast Channel (PBCH) [24]
defined in 4G-LTE/5G protocols.

1) Communication Model: We first introduce the
communication model. We define a vector zu(r) =
[zu,0(r), zu,1(r), . . . , zu,NB(r)] to indicate the task offloading
decisions. When b > 0, zu,b(r) = 1 refers to user u offloading
its task to MiBS b in round r, and zu,b(r) = 0 otherwise.
When b = 0, zu,0(r) = 1 refers to local computing.
For simplicity, b = 0 denotes local computing hereafter.
We assume that each task can be offloaded to at most one
MiBS, and we have∑

b∈{Bu,0}
zu,b(r) = 1, ∀u ∈ U , r ∈ R, (1)

where Bu denotes the set of MiBSs that cover user u.
Similarly, we denote by Ub the set of users that are covered
by MiBS b. For example, as shown in Fig. 1, we have
B3 = {1, 2, 3} and U2 = {1, 3, 4}.

The tasks are transmitted from users to MiBSs through
wireless uplink channels. The single-carrier frequency division
multiple-access (SC-FDMA) technique is adopted, which is
the multiple access scheme for uplink in the Long Term
Evolution [25].1 The uplink subcarriers are orthogonal, and
each is assumed to have the bandwidth ω0. The uplink data
rate of user u offloading its task in round r to MiBS b is
given by [27]

υu,b(r) = ω0 log2

(
1 +

pugu,b(r)
σ2

0

)
, (2)

where pu is the fixed transmission power of user u, gu,b(r)
is the power gain between user u and MiBS b, and σ2

0 is the
variance of additive white Gaussian noise (AWGN). Specifi-
cally, we have gu,b(r) = αu,b|hu,b(r)|2, where αu,b = 128.1+
37.6 log10 du,b (dB) is the large-scale fading gain following the

1To obtain channel state information, we can use the channel estimation
methods provided in [26], which include least square (LS) estimator, the
finite impulse response (FIR) algorithm, the least minimum mean square
error (LMMSE) estimator, and the Gauss-Markov estimator. These methods
estimate the channel states data with the help of reference symbols in SC-
FDMA.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

2550 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

3GPP path loss model [28], du,b is the transmission distance
between user u and MiBS b, and hu,b(r) ∼ CN (0, 1) is the
small-scale fading coefficient. The transmission delay of user
u offloading its task in round r to MiBS b can be given by

ttrau,b(r) =

{
cu(r)/υu,b(r), if b > 0,
0, if b = 0,

(3)

where cu(r) is the data size of task at user u in round r.
Without loss of generality, we assume that the data size of
tasks at each user is fixed, i.e., cu(r) = cu, ∀r ∈ R. Similar
to many studies [29], we also assume that the data size of
the task results after processing is usually much smaller than
that of the task so that the downlink transmission delay for
returning the results can be omitted.

2) Computing Model: In the following, we elaborate on
our computing model. Instead of adopting the conventional
two-variable computing model [4], [27], which only considers
the task size and the CPU frequency of the base stations,
in this paper, we consider a more general multi-variable one.
In fact, the computing time of a task is determined by the
features of the task and the associated MiBS. The former
may include the data size of tasks, the tasks’ demands on
computing cycles, the size of temporary variables generated
during the processing, the task type (e.g., data compression,
photo rendering, and audio decoding), etc. The latter may
include the frequency of the processing units, the number of
processing units, the memory size, the availability of parallel
computing, etc [30]. Among the above features, only the data
size of tasks is linearly related to the computing time, while the
relationships between other features and the computing time
is not linear. On this basis, we define the task computational
delay as cu(r)f(b, ψu(r)), where ψu(r) ∈ X = {1, . . . , NX}
is the feature of task in round r at user u. The computational
delay density function f(b, x) refers to the computing time
when MiBS b processes an one-bit task with feature x ∈ X
using full computing resources. Similarly, we define fu(x) as
the computing time when user u processes an one-bit task with
feature x ∈ X locally.

As an MiBS may process several tasks simultaneously from
multiple users, the computational delay of user u offloading
its task to MiBS b in round r can be calculated as

tcom
u,b (r) =

{
cu(r)f(b, ψu(r))/κu,b(r), if b > 0,
cu(r)fu(ψu(r)), if b = 0,

(4)

where κu,b(r) is the fraction that MiBS b allocates its
computing resources to user u in round r and satisfies∑

u∈U κu,b(r) � 1. The specific allocation policy is deter-
mined by each MiBS and may not be the same at all MiBSs.
Clearly, if too many users choose to offload their tasks to
the same MiBS, a significantly increased computational delay
will be introduced. A well-designed computational resource
allocation strategy at the MiBSs can effectively reduce the
task failure occurrence.

B. Problem Formulation

In this section, we formulate the UDN task offloading
problem, which aims to minimize the long-term average task

delay among all users with a restricted number of MiBSs.
We adopt the average delay as the performance metric as it
is one of the most significant performance indicators in 5G-
MEC [11], [12]. The task delay of user u offloading its task
to MiBS b in round r can be given by

tu,b(r) =

{
ttrau,b(r) + tcom

u,b (r), if ttrau,b(r) + tcom
u,b (r) � t0,

ηt0, otherwise.
(5)

In the first case, the task result is returned to user u or the
task is completed locally before the end of round r. Thus the
task delay is the summation of transmission and computing
delay (the transmission delay of local computing equals to
0 according to (3)). In the second case, the task can not
be completed before a pre-defined deadline [31], e.g., end
of round r, then MiBS b will drop the unfinished task and
send a message containing a “failure” indicator back to user
u. Specially, as user u can accurately predict local computing
time tu,b(r) with the knowledge of fu(x), it will always
offload task to MiBSs if the local computing can not be
completed on time. The user will set tu,b(r) = ηt0 as penalty,
where η is the penalty coefficient. Similar to the return of task
results, the transmission of failure indicators is assumed to be
error-free, and the transmission time is omitted.

Mathematically, the task offloading problem can be formu-
lated as P :

min
zu,b(r)∈{0,1}

{ lim
NR→∞

1
NR

∑
r∈R

∑
u∈U

∑
b∈{Bu,0}

zu,b(r)tu,b(r)}

s.t.
∑

b∈{Bu,0}
zu,b(r) = 1, ∀u ∈ U , r ∈ R,

zu,b(r) ∈ {0, 1}, ∀u ∈ U , b ∈ {Bu, 0}, r ∈ R,
where the two constraints ensure that each task of user u
can be offloaded to at most one MiBS that covers u. Here,
we would like to highlight that the problem P , different from
the conventional static optimization, is quite challenging. In P ,
the computational delay function f(b, x) involved in tu,b(r) is
unknown. Therefore, it is impossible to design a task offload-
ing policy by solving a static nonconvex nonlinear integer pro-
gramming problem like in [32]. A possible solution is to learn
f(b, x) through task offloading and observing the resultant
delay tcom

u,b (r). In this context, we can develop a centralized
task offloading policy by utilizing a collaborative multi-agent
multi-armed bandit (MAB) learning [27]. However, centralized
decision making is required, collecting all users’ task features
ψu(r) and then returning the task offloading decisions zu(r).
Clearly, a significant transmission delay may be introduced,
and this is highly undesirable in practice.

III. CALIBRATED CONTEXTUAL BANDIT LEARNING

A. Motivation

The above limitations motivate us to develop a decentral-
ized task offloading policy without peer-to-peer information
exchange, where all users can make decisions locally. The
key is to decouple P into NU independent contextual MAB
problems; each user minimizes its own long-term average task

delay limNR→∞
1
NR

∑
r∈R

∑
b∈{Bu,0} zu,b(r)tu,b(r), where

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CALIBRATED BANDIT LEARNING FOR DECENTRALIZED TASK OFFLOADING IN ULTRA-DENSE NETWORKS 2551

Fig. 2. Flowchart diagram of the CCBL scheme implemented at user u.

Fig. 3. Exemplary exploration-exploitation trade-off trail at bandit selection. If a user adopts the trail as shown in Fig. 4, and we pick up the rounds that the
task feature is x. Then we can find that among the selected rounds, the indexes of rounds used for exploration are 1, 3, 5, 7, 10, 12, 15, . . . and the indexes
of rounds used for exploitation are 2, 4, 6, 8, 9, 11, 13, 14, 16, . . .

f(b, x) can also be learned during this process. However, the
challenge is that here user u has no knowledge of κu,b(r)
in tu,b(r) (c.f. (4)) due to the lack of the number of tasks
offloaded to MiBS b in round r. This motivates us to develop
a calibrated forecaster for user u to predict the task offloading
outcomes, which reveal the number of tasks offloaded to
each MiBS.

We denote by hu(r) ∈ Hu the task offloading outcome in
round r from the view of user u, i.e., the combination of all
other users’ task offloading decisions in round r except user u.
Let NH � (NB)NU−1 denote the size of Hu, determined by
the topology of UDN. In the proposed calibrated forecaster,
the task offloading outcomes are learned via analyzing the out-
comes in the previous rounds {hu(r′)}1�r′<r, and updating
the prediction results continuously.

To achieve this decentralized task offloading policy, we pro-
pose a novel CCBL algorithm shown in Fig. 2, which includes
three core steps (Steps ①②③) and an auxiliary one (Step ④).
On a high level, in Step ① when tasks are generated at users in
round r, user u selects an MiBS b ∈ Bu locally to perform task
offloading, leveraging the information obtained from the last
round. In Step ②, the MaBS monitors the task offloading deci-
sions Z(r) = {zu(r)}u∈U and broadcasts this information.
In Step ③, each user u transfers Z(r) to hu(r), which denotes
the task offloading outcome in round r (the task offloaded by
user u is excluded). Then user u analyzes {hu(r′)}1�r′�r and
generates su(r+1) = [s(1)u (r+1), . . . , s(NH)

u (r+1)]T , which
represent the estimated probabilities of the task offloading
outcomes in round r + 1, where s

(h)
u (r + 1) denotes the

probability that task offloading outcome h happens in round
r + 1. The prediction will assist user u to offload its task
for round r + 1 starting from Step ①. In Step ④, with the
knowledge of Z(r), each user u updates f̃u(b, x), which is its
estimate of the computational delay function f(b, x). In the
following, we will elaborate on these steps, and conduct the
theoretical analysis of the convergence rate.

B. The CCBL Algorithm
1) Contextual Bandit Selection (Step ①): When a task is

generated at user u in round r, an MiBS is selected by
the user locally. Ideally, if the computational delay function
f(b, x) of all MiBSs is known a priori, user u should always
choose the MiBS that is expected to result in the minimal
delay tu,b(r). However, in practice, users may not have the
knowledge of f(b, x) and therefore need to learn it through
task offloading. Clearly, it is necessary to strike a trade-off in
the MiBS selection, targeting an MiBS whose f(b, x) is not
well learned (exploration), or a MiBS which is believed to
result in the minimal tu,b(r) (exploitation).

To address this trade-off, we resort to the contextual bandit
learning theory [33]. We first design multiple decision trails,
one for each task feature, which can ensure that with the
increase of NR, the proportion of the task offloading chances
reserved for exploration becomes smaller. An example of the
decision trails is shown in Fig. 3, where for each task feature
x, the offloading chances are divided into group ρ = 1, 2, . . . ,
and the number of rounds in group ρ is Jρ = 2ρ. In each group,
ρ task offloading chances are used for exploration, while the
others are for exploitation. Note that the first task offloading
chance of each task feature x is used for exploration due to
the lack of the knowledge of f(b, x). When a task is generated
at user u in round r, the user will allocate the decision trail
for x = ψu(r) and select between exploration and exploitation
according to the trail. In the following, we will elaborate on
how to select MiBSs in exploration and exploitation.

For exploration, let C(b, x) denote the number of times
that a user has selected MiBS b for tasks with feature x
before round r. Each user aims to learn f(b, x) via offloading
tasks to MiBS b with the minimal C(b, x). Therefore, user u
should select the following MiBS to perform task offloading
in round r

bu(r) = arg min
b∈Bu

C(b, ψu(r)). (6)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

2552 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

For exploitation, each user u computes the expected task delay
of all MiBSs and offloads its task to MiBS bu(r) with the
minimal expected delay in round r. As shown in Fig. 2, su(r)
is generated by the calibrated forecasters at Step ③ in the last
round (r − 1, r � 2). As a special case, the task in the first
round (r = 1) is offloaded to a random MiBS for exploration.
Based on the estimation of su(r), user u can estimate the
delay of offloading its task to MiBS b in round r as

t̃u,b(r) =

{ ∑
h∈H s(h)

u (r)t̃(h)
u,b(r), if b > 0,

cu(r)fu(ψu(r)), if b = 0,
(7)

where t̃(h)
u,b(r) is the estimate of t(h)

u,b(r), the delay of user u
offloading task to MiBS b in round r and the h-th outcome
happens (if b > 0). When b = 0, t̃(h)

u,b(r) is the accurate total
time delay of local computing. To this end, user u should select
the following MiBS to perform task offloading in round r

bu(r) = arg min
b∈{Bu,0}

t̃u,b(r). (8)

Then, we have zu(r) = [zu,1(r), . . . , zu,NB (r)] =[
�bu(r)=1, . . . ,�bu(r)=NB

]
which is the result of Step ①,

where the indicator �ξ = 1 when event ξ happens and
�ξ = 0 otherwise. To clearly explain the notations here,
we give an example in the following. Assume that in a UDN
shown in Fig. 1, user u = 1 decides to offload its task to
MiBS b = 2 in round r = 3 according to (8). Then we have
b1(3) = 2, z1,2(3) = 1, and z1(3) = [0, 0, 1, 0, 0, 0].

2) Offloading Decision Broadcast (Step ②): After Step ①,
each user u uploads its task according to their decision zu(r).
The MaBS collects Z(r) = {zu(r)}u∈U via monitoring
the network and broadcasts Z(r). This information will be
received and analyzed by users for calibrated learning and
f(b, x) estimation in Steps ③ and ④, respectively. Note that
in contrast to a centralized decision making scheme, the
offloading decisions sharing happens after bandit selection in
the proposed CCBL algorithm. Therefore, the task offloading
decision broadcast has no impact on the task delay tu,b(r).

3) Calibrated Learning (Step ③): In this step, we develop a
calibrated forecaster based on the calibrated learning, enabling
each user u to learn su(r + 1) based on Z(r), which will
assist the user in offloading its task in round r+1. Calibrated
learning was initially designed for an agent playing game with
Nature [34]. If we consider a finite set of possible outcomes
of Nature, the agent uses a forecaster to predict the outcomes
through continuous observing. The sequence of forecasts is
called calibrated if the prediction converges to the observed
long-term probabilities of the outcomes [35]–[37].

In this UDN task offloading problem, each user u (agent)
attempts to predict hu(r+1) which reveals the number of tasks
offloaded to all MiBSs b ∈ B (Nature) in round r + 1. Recall
that the finite set of task offloading outcomes is H. We denote
by S = Δ(H) ⊂ R

NH the set of probability distributions
over NH outcomes from the view of users. The forecaster
at user u aims to learn S and draws su(r + 1) from S in
Step ③. However, learning S will be very challenging if the
number of its elements is not known a priori. Therefore, in this
paper, we consider a relaxed problem: learning a finite set

S = {ps}1�s�Nε
with Nε elements. In the following, we first

give the mathematical definition of an ε-calibrated forecaster,
which attempts to learn S with a favorable performance.

Definition 1 ([38]): A forecaster at user u is referred to as
ε-calibrated if for any ε > 0 and all strategies of other users,
almost surely,

lim sup
NR→∞

1
NR

∥∥∥∥∥
NR∑
r=1

[su(r) − hu(r)]

∥∥∥∥∥ � ε. (9)

The definition means that the prediction result of an
ε-calibrated forecaster su(r) converges to the observed long-
term probabilities of the outcomes hu(r) with high probabil-
ity [39]. For simplicity, in this subsection, we replace su(r)
with s(r) and hu(r) with h(r) hereafter.

Theorem 1: In the UDN task offloading problem, there
exists an ε–calibrated forecaster which generates su(r) from
S for task in each round r.

Proof: We prove the theorem based on the approachability
theory [40]. Consider a game between two players with finite
action sets I and J . We denote by I(r) ∈ I and J(r) ∈ J
the actions taken by the players in round r, and m(I(r),
J(r)) ∈ R

N the corresponding payoff. We assume that each
player takes actions locally and has no knowledge of the
other’s strategy. Let A ⊂ R

N be a set, then by definition,
A is approachable if there exists a strategy for the first player
such that for all strategies of the second one, almost surely,

lim
NR→∞

inf
A∈A

∥∥∥∥∥A− 1
NR

NR∑
t=1

m(I(r), J(r))

∥∥∥∥∥ = 0. (10)

This definition reveals that when a set is approachable, the first
player can follow certain strategy and obtain a stable payoff
in the long term, regardless of the second player’s strategy.

In the UDN task offloading problem, we have I = S and
J = H. We define the payoff

m(s, h) = [0(NH), . . . ,0(NH),ps − ζh,0
(NH), . . . ,0(NH)]
∈ R

Nε×NH , (11)

where 0(NH) = [0, . . . , 0] ∈ R
1×NH and ζh is the h-th vector

in H (1 � h � NH). Thus, N = Nε×NH . We rewrite (10) as

lim
NR→∞

inf
A∈A

∥∥∥∥∥A− 1
NR

NR∑
r=1

m(S(r), H(r))

∥∥∥∥∥ = 0, (12)

where S(r) indicates that s(r) = pS(r), and H(r) indicates
that h(r) = ζH(r). Note that s(r) is not used in the UDN task
offloading problem as shown in Fig. 2, but its value does not
affect the approachability theory when NR →∞. Thus, we set
H(r) = 1. Furthermore, we define mNR in (13), as shown at
the bottom of the next page. We also define a closed convex
set A as

A �
{

[a1
1, . . . , a

NH
1 , . . . , a1

Nε
, . . . , aNH

Nε
] :

Nε∑
s=1

NH∑
h=1

ah
s � ε

}
.

(14)

If we substitute (13) and (14) into (12), then we get (9). That
is, the existence of an ε-calibrated forecaster for the UDN task
offloading problem is equivalent to the approachability of A.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CALIBRATED BANDIT LEARNING FOR DECENTRALIZED TASK OFFLOADING IN ULTRA-DENSE NETWORKS 2553

According to [40], a closed convex set A is approachable
if and only if

∀ζh ∈ H, ∃ps ∈ S, m(s, h) ∈ A. (15)

According to (11), we can construct S such that there exists
ps, which satisfies ‖ ps − ζh ‖� ε, thus m(s, h) ∈ A [41].
Therefore, the approachability of A is proved and we can
ensure the existence of the ε-calibrated forecaster. �

After proving the existence of the ε-calibrated forecaster,
now we introduce a method to calculate s(r+1), the prediction
result of the ε-calibrated forecaster. As indicated in [40], user
u can generate s(r + 1) according to an optimal prediction
distribution γ∗(r) = [γ1(r), . . . , γNε(r)] over S, such that for
any strategy of others users, there is

[mr−1 −ΠA (mr−1)] · [m(γ∗(r), h) −ΠA (mr−1)] � 0,
(16)

where ΠA (mr−1) denotes the projection of mr−1 onto A.
The existence of γ∗(r) is proved in [40]. In the following,
we first compute the projection ΠA (mr−1), then we intro-
duce how to obtain γ∗(r).

The projection ΠA (mr−1) refers to the closest point in
A to mr−1. Note that A is a convex set, the minimization
problem can be solved as follows

ΠA (mr−1) = arg min
A∈A

‖A−mr−1‖22

s.t. ah
s � 0,

Nε∑
s=1

NH∑
h=1

ah
s � ε, (17)

The projection onto A can be done to a desired precision
δ1 with complexity O(log(1/δ1)) [38]. Then, the optimal
prediction distribution γ∗(r) can be obtained through solving
a mini-max problem via linear programming, which is given
in (18), as shown at the bottom of the page. The computation
leads to a polynomial complexity in NH and Nε. Alterna-
tively, the problem can be solved approximately by utilizing
the multiplicative weights algorithm [42]. Then, with a pre-
defined small violation δ2 > 0 in each of NH constraints
given by (16), the complexity of such a solution reduces to
O(NHNε ln(Nε)/δ22) [38].

In Algorithm 1, we show how the ε-calibrated forecaster
at user u generates s(t+ 1) from S.

4) Computational Delay Function f (b, x) Estimation
(Step ④): With Z(r), each user u can update its learning result
of f(b, x). Specifically, when user u receives the returned task
result, it can measure the computational delay tcom

u,b (r). With
the assumption that MiBSs allocate computing resources to

Algorithm 1 The Calibrated Learning Algorithm
1: if t = 1 then
2: Set γ∗(r) = (1/Nε, . . . , 1/Nε).
3: end if
4: Update mr following (13).
5: Calculate ΠA (mr) following (17).
6: Calculate γ∗(r + 1) following (18).
7: Select s(r + 1) from S according to γ∗(r + 1).

all received tasks equally, user u can update its estimate of
f(b, ψu(r)) as

f̃(b, ψu(r))← tcom
u,b (r)κu,b(r)/cu+C(b, ψu(r))f̃ (b, ψu(r))

C(b, ψu(r)) + 1
.

(19)

Based on the aforementioned four steps in the CCBL
algorithm, we summarize the algorithm in its entirety in
Algorithm 2.

Algorithm 2 The CCBL Algorithm for User u

1: Set C(b, x) = 0 for all task types. � Initialization
2: for r = 1, . . . , NR do
3: Make a choice between Exploration and Exploitation.
� Step ①

4: if Exploration is chosen then
5: Offload task to the MiBS bu(r) given in (6).
6: else
7: Calculate the estimated delay of all MiBSs following

(7).
8: Offload task to the MiBS bu(r) given in (8).
9: end if

10: Upload zu(r) to the MaBS, and then receive Z(r) from
it. � Step ②

11: Receive task result from MiBS bu(r) and measure the
delay ttra

u,b(r) and tcom
u,b (r).

12: Generate su(r + 1) via Algorithm 1. � Step ③

13: Update f̃(b, x) following (19). � Step ④
14: Update r← r+ 1 and C(b, ψu(r))← C(b, ψu(r)) + 1.
15: end for

C. Computational Complexity and Convergence Rate

Based on the complexity of (17) and (18), the complexity of
Algorithm 2 is O(NHNε ln(Nε)/δ22 + log(1/δ1)+Nε). Note
that Step ③ happens after Step ② (task offloading), thus the

mNR � 1
NR

[
NR∑
r=1

�S(r)=1(p1 − h(r)), . . . ,
NR∑
r=1

�S(r)=Nε
(pNε

− h(r))

]
=

1
NR

NR∑
r=1

m(S(r), H(r)). (13)

γ∗(r)=arg min
γ(r)

max
1�h�NH

[mr−1−ΠA (mr−1)] ·m(γ(r), h)=arg min
γ(r)

max
1�h�NH

Nε∑
s=1

{γs(r) [mr−1−ΠA (mr−1)] ·m(s, h)} .

(18)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

2554 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

computing of Algorithm 1 at users happens simultaneously
with the computing of tasks at MiBSs. Therefore, the com-
puting time of Algorithm 1 is not included in the task delay
in (5). Due to the interaction between the contextual bandit
learning and calibration learning in the CCBL algorithm,
it becomes very challenging to provide the analysis on the
convergence rate of the whole CCBL algorithm. Instead,
we turn to analyze the convergence rate of the calibrated
learning algorithm (Algorithm 1).

Theorem 2: For the calibrated forecaster given in
Algorithm 1, almost surely, we have

lim sup
NR→∞

N
1/NH+1
R√
ln(NR)

sup
S∈S

∥∥∥∥∥ 1
NR

NR∑
r=1

�pS(r)∈S(pS(r) − ζH(r))

∥∥∥∥∥
� ΓNH , (20)

where S is the Borel sigma-algebra of S and the constant
ΓNH depends only on NH .

Proof: We first introduce a meta-forecaster that proceeds
in regimes [43]. In the ρ-th group (ρ = 1, 2, . . .) of a meta-
forecaster, an ερ-calibrated forecaster can be reached within
Jρ rounds with well-designed value of ερ and Jρ. That is,
the resulting meta-forecaster is calibrated in the sense of (9),
and even uniformly calibrated in the following sense [38], i.e.,
almost surely,

lim
NR→∞

sup
S∈S

∥∥∥∥∥ 1
NR

NR∑
r=1

�pS(r)∈S(pS(r) − ζH(r))

∥∥∥∥∥ = 0. (21)

The uniform calibration implies any ε-calibration via the
choices for S. An application of the Borel-Cantelli Lemma
and Cesaro’s Lemma shows that, when ερ decreases towards
0 and Jρ increases such that εNH

ρ Jρ tends to infinity fast
enough, the uniformly calibrated forecaster shown in (21)
can be reached. Recall that Jρ = 2ρ, thus if we set

ερ = 2−ρ/(NH−1), then Jρ and
√

1/(εNH−1
ρ Jρ) are of

the same order of magnitude. Therefore, we can achieve
Theorem 2. �

Therefore, for the calibrated learning, the convergence
rate decreases for an increasing number of task offloading
outcomes NH . However, for the regression process, if we
assume that some fixed number of samples are required to
estimate the reward of each joint action profile with sufficient
precision, increasing NU or NH reduces the sampling rate
and thereby the convergence speed. Therefore, adopting the
optimal NH that can guarantee a balanced trade-off between
the convergence speed of the calibrated learning and regression
process, is a challenge of the calibrated forecaster. This is
out of the scope of this paper, but alternatively, we can
choose a Nature that is easier to calibrate. In the next section,
we propose a new calibrated forecaster and demonstrate by
simulation its superiority over the CCBL in specific scenarios.

IV. USER-ORIENTED CALIBRATED FORECASTER

In the previous section, we have proposed the CCBL algo-
rithm for decentralized task offloading, where the calibrated
forecaster keeps observing the task offloading outcome hu(r)
and predicts its value in the next round r+1. The combination

Fig. 4. Flowchart diagram of the UOCCBL scheme implemented at user u.

of all MiBSs are regarded as Nature, and therefore NH being
large (up to (NB)NU−1) results in high computational com-
plexity in Algorithm 1. To vastly reduce the computational
complexity, in this section, we propose a novel user-oriented
calibrated forecaster. The key is to transfer the calibration
target from all MiBSs to a single user. In this case, each
user u′ ∈ U−u is regarded as new Nature. Under this
framework, each user now requires up to NU − 1 calibrated
forecasters and each forecaster needs to calibrate up to NB

outcomes. Therefore, the total number of outcomes that require
calibration is decreased to NB(NU−1), which is linear in NU .

The flowchart of the UOCCBL algorithm is given in Fig. 4.
For clear presentation, we omitted round r− 1 and r+ 1 and
step ④. Next, we elaborate on the new procedures of Step ①

and Step ③, which are asterisked in the flowchart. It should
be noted that compared with the CCBL algorithm, in the
UOCCBL algorithm, the total number of outcomes that require
calibration is largely decreased due to the transfer of the target
of calibration. However, the decrease in computing complexity
comes with a price. Later in the numerical results, we show
that the long-term performance of the UOCCBL algorithm is
inferior to that of the CCBL algorithm.

A. The UOCCBL Algorithm

1) Contextual Bandit Selection (Step ①): The calibrated
learning result of user u in round r − 1 is task offloading
strategies of all other users Qu(r) =

{
qu,u′(r)

}
u′∈U−u

. From

the perspective of user u, qu,u′(r) = [q(1)u,u′(r), . . . , q
(NB)
u,u′ (r)]

and q(b)u,u′(r) is the estimated probability that user u′ offloads
its task to MiBS b in round r. Based on Qu(r), user u
can estimate the delay of offloading its task to MiBS b in
round r as

t̃u,b(r) =
∑

w∈W
Pr{w|Qu(r)}t̃(w)

u,b (r), (22)

where logical matrix W ⊂ R
NU×NB includes all the possible

task offloading decisions of NU users, Pr{w|Qu(r)} denotes
the conditional probability of event w ∈ W given Qu(r).
t̃
(w)
u,b (r) is the estimate of tu,b(r)w , the delay of user u

offloading task to MiBS b in round r and event w happens.
2) Calibrated Learning (Step ③): In this step, Z(r) is

analyzed by the calibrated forecaster at each user u to learn the
task offloading strategies of all other users Qu(r+1) for their

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CALIBRATED BANDIT LEARNING FOR DECENTRALIZED TASK OFFLOADING IN ULTRA-DENSE NETWORKS 2555

tasks in round r+1. The learning result enables user u to pre-
dict others’ next decisions Z̃−u(r+1) = {z̃u′(r + 1)}u′∈U−u

(Note that this is the estimated value), and assists user u to
offload its task for the next round staring from Step ①.

Recall that the finite set of offloading decisions of user
u′ ∈ U−u is B. We denote by L = Δ(B) ⊂ R

NB the
set of probability distributions over NB outcomes and L =
{yl}1�l�Nε

has Nε elements. The forecaster at user u aims
to learn L and draws qu,u′(r+ 1) from L for all u′ ∈ U−u in
Step ③. Similar to Algorithm 1, in each loop we first update
m′

r following (23), as shown at the bottom of the page, where
l(r′) indicates that y(r′) = pl(r′), and pl is the l-th vector in
L (1 � l � Nε). Then calculate ΠD (m′

r), the projection of
m′

r onto D, following

ΠD
(
m′

r−1

)
= arg min

D∈D
∥∥D −m′

r−1

∥∥2

2
. (24)

where D is defined as

D = {[d1
1, . . . , d

NB
1 , . . . , d1

Nε
, . . . , dNB

Nε
] :

db
l � 0,

Nε∑
l=1

NB∑
b=1

db
l � ε}. (25)

At last, the calibration calculates γ∗(r + 1) follows,

γ∗(r + 1)

= arg min
γ(r+1)

max
b∈B

Nε∑
l=1

{γs(r + 1) [m′
r −ΠD (m′

r)]

·m′(l, b)} , (26)

where m′(l, b) = [0(NB), . . . ,0(NB),pl − δb,
0(NB), . . . ,0(NB)] ∈ R

Nε×NB and 0(NB) = [0, . . . , 0] ∈
R

1×NB . We denote δb ∈ R
NB a vector whose b-th element

is 1 and the others are 0. Then each forecaster selects
qu,u′(r + 1) from L according to γ∗(r + 1).

The transfer of calibrated learning targets makes users no
longer need to predict the task offloading decisions of all other
users. Instead, each user only learns nearby peers’ behavior,
which significantly simplifies the algorithm implementation.

V. SIMULATION RESULTS

In this section, numerical results are presented to illustrate
the advantages of the proposed CCBL and UOCCBL algo-
rithms. We first illustrate that the performance of CCBL is
superior to the existing decentralized task offloading strategies
and only slightly inferior to the centralized one. Then, we val-
idate the increased effectiveness of ε-calibration forecasters in
the CCBL algorithm with increased r. Next, we validate that
the proposed CCBL algorithm works robustly across a wide
range of network typologies. Finally, we illustrate the relative
merits of the UOCCBL and CCBL algorithms in different task
rounds.

A. Conventional Algorithms for Comparison

To evaluate the performance of the proposed CCBL algo-
rithm, we introduce several conventional algorithms for com-
parison.

• Random: In the random algorithm, all users randomly
offload tasks to MiBSs. Clearly, this simplest method
shall have the worst performance with low computational
complexity O(1).

• LTS: We develop the baseline, the long-term stable (LTS)
algorithm, where each user offloads tasks to a fixed MiBS
and the task offloading strategy is optimized via an one-
time exhaustive search with computational complexity
O([NX(NB + 1)]NU). Note that the exhaustive search
may take a long time as the task features are randomly
generated.

• Myopic [44]: In the myopic algorithm, users explore all
MiBS several times (we set 1 in our simulation) and stick
to the one with the minimal expected delay after that.
It does not utilize the knowledge of task features, thus its
learning result can not accurately reveal the performance
of MiBSs when task features vary. The computational
complexity of each round is O(NB).

• ε-Greedy [45]: In the ε-Greedy algorithm, users offload
tasks to the MiBS with the minimal observed value
of delay based on current knowledge but attempt to
select other MiBS with a probability smaller than 0.7.
Otherwise, it randomly offloads tasks. Unlike the myopic
algorithm, the delay of MiBS processing tasks with differ-
ent features is recorded separately. Then such knowledge
can be utilized in improving the task processing delay
prediction. The computational complexity of each round
is also O(NB) but its space complexity is NX times
larger than the myopic algorithm.

• CUCB [43]: In the Calibrated Upper Confidence
Bound (CUCB) algorithm, all users obverse, learn,
and predict peer task offloading decisions via cali-
brated forecasters. When they make scheduling deci-
sions, they follow a UCB-based algorithm rather than the
contextual bandit selection introduced in Section III-B-
1). The computational complexity of each round is
O(NHNε ln(Nε)/δ22 + log(1/δ1) +Nε).

• CGA [46]: In the centralized greedy algorithm (CGA),
a central decision-maker collects task features of all
users and makes task offloading decisions to minimize
the total delay of all tasks. When tasks are completed,
the value of delays is uploaded to the decision-maker
which then learns the performance of all MiBSs in
a centralized way. This algorithm achieves the mini-
mum average delay with the cost of a central decision-
maker deployment and information transmission over-
head. The computational complexity of each round is
O((NB + 1)NU).

m′
r =

1
r

[
r∑

r′=1

�l(r′)=1(p1 − z(r′)), . . . ,
r∑

r′=1

�l(r′)=Nε
(pNε

− z(r′))

]
. (23)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

2556 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

Fig. 5. The (a) average delay of all tasks and (b) average simulation time of each task of all algorithms.

B. Simulation Results
The mobile edge computing network enabled by ultra-

densely deployed computing services has been investigated
in many publications, such as [14], [16], [47], [48]. In this
paper, we mainly follow the widely adopted settings and
configurations in these representative works. In specific, in the
simulation, we set ω0 = 15 kHz for all b ∈ B, pu = 0.5 w,
cu = 104 bits for all u ∈ U , and σ2

0 = 2 × 10−13 w.
We also set NX = 12, η = 2, and t0 = 0.02 s. The
task feature ψu(r) in round r at user u is picked from X
randomly, the value of f(b, x) for each b and x is picked
from [1, 12]× 10−6 s/bit randomly, and fu(x) is picked from
[4, 48]× 10−6 s/bit randomly. We set an equal computational
resource allocation policy for all MiBSs to calculate κu,b(r).
That is κu,b(r) = 1/

∑
u′∈U zu′,b(r).

We compare the average delay of the proposed CCBL
algorithm with the CGA and existing decentralized ones
in Fig. 5(a). Here we consider a heterogeneous ultra-dense
network with a typology the same as Fig. 1. As shown in
Fig. 5(a), the LTS algorithm, an optimized one with fixed task
offloading decisions, outperforms the random one. The average
delay is also decreased compared with the random algorithm
when the knowledge of MiBS computational delay function
and the task features considered in the Myopic algorithm and
the ε-Greedy algorithm, respectively. These two algorithms
attempt to learn the computing performance of MiBSs but
can not guide users to avoid collisions coming from peers.
Therefore, when the actions of other users are predicted in
the CUCB and CCBL algorithms, it is clearly shown that the
average delay is further decreased as these two methods utilize
all the available information in a decentralized manner. It is
also shown that the proposed CCBL algorithm outperforms the
UCB algorithm. This is because the contextual bandit selection
(introduced in Section III-B-1) is a necessary condition for
the convergence of calibrated learning [43]. If it is replaced
with the CUCB algorithm, the convergence of the calibrated
learning is not promised anymore. This will lead to an increase
in the average delay of all tasks. We also note that the proposed
CCBL algorithm is only slightly inferior to the centralized
one (the performance benchmark). This significantly bridges

Fig. 6. The task offloading outcome hu(r) and the estimated probabilities
su(r) with increased task round r.

the performance gap between the centralized and decen-
tralized algorithms. We also record the average simulation
time of each task on an AMD Ryzen Threadripper 3970X
32-Core CPU running at 3.69 GHz, Windows 10 (64 bit) with
MATLAB. It shows that the simulation time of CUCB, CCBL,
and CGA is much larger than that of the other algorithms.
In return, the average delay of these three algorithms is the
lowest. Note that the computation of the proposed CCBL
algorithm mainly happens in Step ③ after Step ② (task
offloading), thus the simulation time is not included in average
task delay.

Fig. 6 depicts the task offloading outcome hu(r) and its
probability su(r) estimated by user u = 1 for different task
round r. As shown in the figure, when r = 1, the probability
of all NH = 12 outcomes is 1/12. Thus, user 1 randomly
picks an outcome and takes it as the prediction result. With the
increase of r, user 1 observes more task offloading decisions of
others and utilizes them for the calibrated learning. As a result,
the prediction results keep approaching the true outcome and
almost converge to it when r = 1000. This validates the
increased accuracy of prediction of Nε calibration learning
with increased r (Step ③ in Fig. 2).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CALIBRATED BANDIT LEARNING FOR DECENTRALIZED TASK OFFLOADING IN ULTRA-DENSE NETWORKS 2557

Fig. 7. The average delay of all users versus the number of (a) users and (b) MiBSs with NR = 104.

Fig. 7 illustrates how the proposed CCBL algorithm works
robustly when the number of users NU and MiBSs NB

vary. For comparison, we also depict the performance of two
benchmarks (Random and CGA) and two typical decentralized
algorithms (Myopic and ε-Greedy). In Fig. 7(a), it is observed
that the average delay of the decentralized algorithms are very
close to the CGA when NU is small (NU = 2). This is
because users’ tasks are rarely offloaded to a certain MiBS
when NU is small, so the advantage of centralized scheduling
is not apparent in these cases. With the increase of NU ,
we can see that the average delay of all algorithms increases,
as more tasks are required to be processed with the same
number of MiBSs. Meanwhile, it is shown in the figure that
the gap between the average delay of decentralized algorithms
and the centralized one becomes more considerable. This
is predictable as task collision becomes more common in
decentralized algorithms, where some MiBSs are required to
process tasks offloaded by multiple users. The superiority of
deploying a central decision-maker becomes obvious when
task collision happens. However, we notice in the figure that
the average delay of the proposed CCBL algorithm is almost
the same as the CGA with small NU and close to CGA
with large NU . This reveals the robustness of the CCBL
algorithm. In Fig. 7(b), with the increase of NB , the average
delay of all algorithms decreases. Meanwhile, the gap between
the centralized and decentralized algorithms becomes smaller.
This shows that adequate computational resources (MiBSs)
lead to small task delays and weaken the advantages of well-
designed algorithms.

Fig. 8 illustrates the impact of Nε on the average delay and
computing complexity (simulation time). With the increased
Nε, the calibrated forecaster can take more possible situations
into consideration with the cost of higher computing complex-
ity. We adopt the same setting as in Fig. 5(a) and record the
simulation time. It is obvious that a larger NU leads to higher
computing complexity and larger average delay. As shown in
the figure, the simulation time increases almost linearly with
Nε for both NU = 7 and NU = 8. For NU = 7, when
Nε increases, the average delay decreases significantly for
Nε � 10. This is because S can hardly cover the probability of

Fig. 8. The average delay of all users and the simulation time versus Nε

with different NU .

NH outcomes when Nε is small, thus the increase of Nε can
obviously improve the prediction accuracy. However, when
Nε � 10, the prediction accuracy will no longer benefit from
the increase of Nε. Thus the average delay of tasks fluctuates
with the increase of Nε. For NU = 8, a similar trend could
be observed. The simulation result reveals the necessity of
choosing suitable Nε for task offloading with different network
typologies.

Fig. 9 illustrates the relative merits of the UOCCBL and
CCBL algorithms for different NU . As shown in the figure,
the average delay of UOCCBL decreases faster than that
of CCBL when r � 2 × 103 for all NU . This is because
NH is smaller in UOCCBL than CCBL, as mentioned in
Section IV, and this will accelerate the convergence rate. It is
also shown that when NU = 4, the average delay of these
two algorithms is almost the same when r is large. This is
because when NU is small the conflicts among users happen
less frequently, thus the task offloading decisions of users can
be regarded as independent. Therefore, the performance of the
UOCCBL algorithm will approach that of the CCBL when
r increases.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

2558 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

Fig. 9. The average delay of all users versus task round r using CCBL and
UOCCBL algorithms with different NU .

VI. DISCUSSION AND EXTENSIONS

A. Extensions of the Proposed Algorithm in
Dynamic Networks

The proposed method only works in static scenarios, and its
effectiveness might not be guaranteed whenever the network
topology changes. This is because the learning results of the
proposed algorithm depend on three aspects: the task features,
the unknown BS computing functions, and the topology of
the network. If a mobile user enters a new network, all three
aspects are different. Therefore, the historic learning results
are not effective anymore and a new learning is necessary.
However, if mobile users move within a specific network
(the coverage area of a specific MaBS), a new learning is
not necessary. In the following, we will discuss two possible
methods to handle the mobility by enhancing the proposed
CCBL algorithm.

• We can incorporate the passively adaptive methods
(e.g., SW-UCB algorithm [49] and Rexp3 algorithm [50])
into our algorithm. Thereby we can keep track of other
users’ behaviors by updating users’ learning results based
on the most recent observations.

• Besides, we can also leverage actively adaptive methods
(e.g., Adapt-EvE algorithm [51] and CD-UCB algo-
rithm [52]). They adopt extra changing detection algo-
rithms to monitor the varying topology caused by the
mobility of users. The CCBL algorithm will restart when
the variation of the topology exceeds a given threshold.

B. Possibility That the MaBS Provides Computing Capability

In this paper, the function of the MaBS is not to provide
strong computational capabilities but to only broadcast the task
offloading decisions of all users. The MiBSs are ultra-densely
deployed, thus they are normally much closer to users than
the MaBS with a large coverage. Offloading tasks to MiBSs
can significantly reduce the transmission latency and energy.
Note that the broadcasting happens in Step ② of our algorithm.
The MaBS provides users with the task offloading decisions
of others and enables users to learn the behavior of others.

We consider a UDN in this paper, where the MiBSs are
densely deployed. Therefore, it is rare that a user is not

covered by any MiBS. However, if such a case happens, it is
possible to extend our proposed policy. In specific, the MaBS
can be taken as a MiBS that covers all users. It can receive
tasks from users and monitor the system simultaneously, and
broadcast the task offloading decisions of all users when doing
task processing. At last, it returns the task results. However,
as mentioned above, offloading tasks to the MaBS will result
in large transmission delay, thus it will not be a preferred
choice for users.

C. Experimental Results

Some actual experimental results and comparisons with
them can further verify the merits of the proposed method.
However, these require abundant hardware resources such as a
wide-band access point with full-duplex communication capa-
bilities, multiple access points with computational capabilities,
and lots of end devices capable of communication in multiple
wireless channels. The verification and comparison of a testbed
construction and associated experimental could serve as a
future topic.

D. Malicious Users and Imperfect Information Broadcast

In the proposed system, if malicious users exist and upload
tasks to several MiBSs at the same time, they will occupy lots
of computational resources and increase the average delay of
all users. In this case, the MaBS can observe the unusual task
offloading pattern and identify the related users as malicious
ones. Then the MaBS can instruct MiBSs to stop processing
the tasks from the malicious users. In this paper, we assume
perfect and accurate task offloading decisions broadcast by the
MaBS. In the case that the users far away from the MaBS fail
to receive the broadcast information, it will make offloading
decisions based on the previous learning results, and this will
serve as our future research topic.

VII. CONCLUSION

In this paper, we developed a novel decentralized task
offloading strategy in UDN, where users make task offload-
ing decisions locally and independently. We formulated the
associated optimization problem by minimizing the long-
term average task delay among all users and proposed a
CCBL algorithm. This algorithm enables users to learn the
computational delay functions of MiBSs and predict the task
offloading decisions of other users in a decentralized manner.
Based on the approachability theory, we verified the conver-
gence of the CCBL algorithm. Then we propose a UOCCBL
algorithm to further decrease the computational complexity
and increase convergence rate, where the target of calibrated
learning is transferred from all MEC servers to a single user.
Simulation results validated that the proposed CCBL algorithm
significantly outperforms the existing algorithms in terms of
the long-term average delay and that it is only slightly inferior
to the centralized one.

REFERENCES

[1] I. Bortone et al., “Wearable haptics and immersive virtual reality rehabil-
itation training in children with neuromotor impairments,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 26, no. 7, pp. 1469–1478, Jul. 2018.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: CALIBRATED BANDIT LEARNING FOR DECENTRALIZED TASK OFFLOADING IN ULTRA-DENSE NETWORKS 2559

[2] F. Wu, T. Wu, and M. Yuce, “An Internet-of-Things (IoT) network sys-
tem for connected safety and health monitoring applications,” Sensors,
vol. 19, no. 1, p. 21, Dec. 2018.

[3] S. Liu, L. Liu, J. Tang, B. Yu, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proc. IEEE,
vol. 107, no. 8, pp. 1697–1716, Jun. 2019.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[5] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[6] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges,” IEEE Commun. Mag., vol. 55, no. 4, pp. 54–61, Apr. 2017.

[7] M. Jia and W. Liang, “Delay-sensitive multiplayer augmented reality
game planning in mobile edge computing,” in Proc. 21st ACM Int. Conf.
Modeling, Anal. Simulation Wireless Mobile Syst. New York, NY, USA:
ACM, 2018, pp. 147–154.

[8] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila,
“A survey on mobile augmented reality with 5G mobile edge comput-
ing: Architectures, applications, and technical aspects,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1160–1192, 2nd Quart., 2021.

[9] Y. Yu, “Mobile edge computing towards 5G: Vision, recent progress,
and open challenges,” China Commun., vol. 13, no. 2, pp. 89–99, 2016.

[10] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[11] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep reinforcement
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing,” Digit. Commun. Netw., vol. 5, no. 1,
pp. 10–17, Feb. 2019.

[12] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, Jan. 2019.

[13] C. Gao, Y. Li, Y. Zhao, and S. Chen, “A two-level game theory approach
for joint relay selection and resource allocation in network coding
assisted D2D communications,” IEEE Trans. Mobile Comput., vol. 16,
no. 10, pp. 2697–2711, Oct. 2017.

[14] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks:
A survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522–2545,
4th Quart., 2016.

[15] S. Chen, F. Qin, B. Hu, X. Li, and Z. Chen, “User-centric ultra-dense
networks for 5G: Challenges, methodologies, and directions,” IEEE
Wireless Commun., vol. 23, no. 2, pp. 78–85, Apr. 2016.

[16] Y. Sun, S. Zhou, and J. Xu, “EMM: Energy-aware mobility management
for mobile edge computing in ultra dense networks,” IEEE J. Sel. Areas
Commun., vol. 35, no. 11, pp. 2637–2646, Nov. 2017.

[17] K. Liu and Q. Zhao, “Distributed learning in multi-armed bandit
with multiple players,” IEEE Trans. Signal Process., vol. 58, no. 11,
pp. 5667–5681, Nov. 2010.

[18] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically effi-
cient allocation rules for the multiarmed bandit problem with multi-
ple plays—Part II: Markovian rewards,” IEEE Trans. Autom. Control,
vol. AC-32, no. 11, pp. 977–982, Nov. 1987.

[19] Z. Chen and X. Wang, “Decentralized computation offloading for multi-
user mobile edge computing: A deep reinforcement learning approach,”
EURASIP J. Wireless Commun. Netw., vol. 2020, no. 1, pp. 1–21,
Dec. 2020.

[20] S. Seng, C. Luo, X. Li, H. Zhang, and H. Ji, “User matching on
blockchain for computation offloading in ultra-dense wireless net-
works,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1167–1177,
Apr. 2021.

[21] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2018, pp. 207–215.

[22] K. Gai, K. Xu, Z. Lu, M. Qiu, and L. Zhu, “Fusion of cognitive wireless
networks and edge computing,” IEEE Wireless Commun., vol. 26, no. 3,
pp. 69–75, Jun. 2019.

[23] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Trans. Veh. Technol., vol. 68,
no. 5, pp. 5031–5044, May 2019.

[24] Z. Lin, J. Li, Y. Zheng, N. V. Irukulapati, H. Wang, and H. Sahlin,
“SS/PBCH block design in 5G new radio (NR),” in Proc. IEEE Globe-
com Workshops (GC Wkshps), Dec. 2018, pp. 1–6.

[25] B. E. Priyanto, H. Codina, S. Rene, T. B. Sorensen, and P. Mogensen,
“Initial performance evaluation of DFT-spread OFDM based SC-FDMA
for UTRA LTE uplink,” in Proc. IEEE 65th Veh. Technol. Conf. (VTC-
Spring), Apr. 2007, pp. 3175–3179.

[26] X. Jin, “Channel estimation techniques of SC-FDMA,”
Ph.D. dissertation, Dept. Phys. Elect. Eng., Karlstad Univ., Karlstad,
Sweden, 2007.

[27] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[28] Evolved Universal Terrestrial Radio Access, 3GPP,
document TR 36.931, May 2011.

[29] P. Hu, H. Ning, T. Qiu, Y. Zhang, and X. Lou, “Fog computing based
face identification and resolution scheme in Internet of Things,” IEEE
Trans. Ind. Informat., vol. 13, no. 4, pp. 1910–1920, Aug. 2017.

[30] Y. Wu, F. Li, L. Ma, Y. Xie, T. Li, and Y. Wang, “A context-aware mul-
tiarmed bandit incentive mechanism for mobile crowd sensing systems,”
IEEE Internet Things J., vol. 6, no. 5, pp. 7648–7658, Oct. 2019.

[31] Y.-L. Jiang, Y.-S. Chen, S.-W. Yang, and C.-H. Wu, “Energy-efficient
task offloading for time-sensitive applications in fog computing,” IEEE
Syst. J., vol. 13, no. 3, pp. 2930–2941, Sep. 2019.

[32] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge
computing: Partial computation offloading using dynamic voltage
scaling,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282,
Oct. 2016.

[33] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, no. 1, pp. 4–22, Mar. 1985.

[34] D. P. Foster and R. V. Vohra, “Calibrated learning and correlated
equilibrium,” Games Econ. Behav., vol. 21, nos. 1–2, p. 40, 1997.

[35] S. Maghsudi and S. Stańczak, “Channel selection for network-assisted
D2D communication via no-regret bandit learning with calibrated fore-
casting,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1309–1322,
Mar. 2015.

[36] X. Zhang, M. R. Nakhai, G. Zheng, S. Lambotharan, and B. Ottersten,
“Calibrated learning for online distributed power allocation in small-
cell networks,” IEEE Trans. Commun., vol. 67, no. 11, pp. 8124–8136,
Nov. 2019.

[37] X. Xu and M. Tao, “Decentralized multi-agent multi-armed bandit
learning with calibration for multi-cell caching,” IEEE Trans. Commun.,
vol. 69, no. 4, pp. 2457–2472, Apr. 2021.

[38] S. Mannor and G. Stoltz, “A geometric proof of calibration,” Math. Oper.
Res., vol. 35, no. 4, pp. 721–727, Nov. 2010.

[39] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonsto-
chastic multiarmed bandit problem,” SIAM J. Comput., vol. 32, no. 1,
pp. 48–77, 2011.

[40] D. Blackwell, “An analog of the minimax theorem for vector payoffs,”
Pacific J. Math., vol. 6, no. 1, pp. 1–8, 1956.

[41] D. P. Foster, “A proof of calibration via Blackwell’s approachability
theorem,” Games Econ. Behav., vol. 29, nos. 1–2, pp. 73–78, Oct. 1999.

[42] Y. Freund and R. E. Schapire, “Adaptive game playing using multi-
plicative weights,” Games Econ. Behav., vol. 29, nos. 1–2, pp. 79–103,
1999.

[43] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[44] F. Wang, J. Xu, and S. Cui, “Optimal energy allocation and task
offloading policy for wireless powered mobile edge computing sys-
tems,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2443–2459,
Apr. 2020.

[45] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” 2014, arXiv:1402.6028.

[46] W.-J. Feng, C.-H. Yang, and X.-S. Zhou, “Multi-user and multi-task
offloading decision algorithms based on imbalanced edge cloud,” IEEE
Access, vol. 7, pp. 95970–95977, 2019.

[47] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[48] H. Guo, J. Liu, and J. Zhang, “Computation offloading for multi-access
mobile edge computing in ultra-dense networks,” IEEE Commun. Mag.,
vol. 56, no. 8, pp. 14–19, Aug. 2018.

[49] A. Garivier and E. Moulines, “On upper-confidence bound policies for
switching bandit problems,” in Algorithmic Learning Theory, J. Kivinen,
C. Szepesvári, E. Ukkonen, and T. Zeugmann, Eds. Berlin, Germany:
Springer, 2011, pp. 174–188.

[50] O. Besbes, Y. Gur, and A. Zeevi, “Stochastic multi-armed-bandit prob-
lem with non-stationary rewards,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 27, 2014, pp. 199–207.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

2560 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 4, APRIL 2022

[51] C. Hartland, N. Baskiotis, S. Gelly, M. Sebag, and O. Teytaud,
“Change point detection and meta-bandits for online learning in dynamic
environments,” in Proc. Conférence Francophone Sur L’Apprentissage
Automatique, 2007, pp. 237–250.

[52] F. Liu, J. Lee, and N. Shroff, “A change-detection based framework for
piecewise-stationary multi-armed bandit problem,” in Proc. AAAI Conf.
Artif. Intell., 2018, vol. 32, no. 1, pp. 1–8.

Rui Zhang received the Ph.D. degree from The
University of Sydney in December 2020. He is
currently with the Department of Information Engi-
neering, The Chinese University of Hong Kong.
His research interests include machine learning in
wireless communications and wireless sensing and
localization systems.

Peng Cheng (Member, IEEE) received the B.S.
and M.S. degrees (Hons.) in communication and
information systems from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2006 and 2009, respectively, and
the Ph.D. degree from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2013. From 2014 to 2017,
he was a Post-Doctoral Research Scientist at CSIRO,
Sydney, Australia. From 2017 to 2020, he was an
ARC DECRA Fellow/Lecturer at The University of
Sydney, Sydney. He is currently an ARC DECRA

Fellow and a Senior Lecturer (Tenured Associate Professor in U.S. systems)
with the Department of Computer Science and Information Technology,
La Trobe University, Australia, and also affiliated with The University of
Sydney. He has published over 70 peer-reviewed research papers in leading
international journals and conferences. His current research interests include
wireless AI, machine learning, the IoT, millimeter-wave communications, and
compressive sensing theory.

Zhuo Chen (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 1997, and
the M.S. and Ph.D. degrees from the School of
Electrical and Information Engineering, The Uni-
versity of Sydney, Sydney, Australia, in 2001 and
2004, respectively. He was a Senior Research Sci-
entist with the Commonwealth Scientific and Indus-
trial Research Organization (CSIRO), Sydney. His
research interests include wireless communications,
machine learning, and wireless sensor networks.

Sige Liu received the B.S. degree in communica-
tion engineering from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2018. He is currently pursuing the Ph.D. degree
with the School of Electrical and Information Engi-
neering, The University of Sydney, Australia. His
research interests include machine learning and its
applications in wireless networks, the Internet of
Things (IoTs), and mobile edge computing.

Branka Vucetic (Life Fellow, IEEE) is currently an
ARC Laureate Fellow and the Director of the Centre
of Excellence for IoT and Telecommunications, The
University of Sydney. Her current research work is in
wireless networks and the Internet of Things. In the
area of wireless networks, she works on communi-
cation system design for millimeter wave frequency
bands. In the area of the Internet of Things, she
works on providing wireless connectivity for mis-
sion critical applications. She is a fellow of the
Australian Academy of Technological Sciences and
Engineering and the Australian Academy of Science.

Yonghui Li (Fellow, IEEE) received the Ph.D.
degree in communications engineering from Beihang
University, Beijing, China, in November 2002.

He is now a Professor and the Director of Wireless
Engineering Laboratory, The University of Sydney,
Sydney, Australia. He holds a number of patents
granted and pending. His current research interests
include wireless communications, with a particular
focus on MIMO, millimeter wave communications,
machine to machine communications, coding tech-
niques, and cooperative communications.

Prof. Li was a recipient of the Australian Queen Elizabeth II Fellowship in
2008 and the Australian Future Fellowship in 2012. He was also a recipient of
several best paper awards from IEEE conferences, such as International Con-
ference on Communications (ICC) and International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIRMC). He is now an Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS and IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY. He also served as the Guest Editor for
several IEEE journals.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 05,2024 at 07:28:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

